10 research outputs found

    Statistical Model Checking for Stochastic Hybrid Systems

    Get PDF
    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique applied for implementing this semantics in the UPPAAL-SMC simulation engine. We report on two applications of the resulting tool-set coming from systems biology and energy aware buildings.Comment: In Proceedings HSB 2012, arXiv:1208.315

    Cascading signaling pathways improve the fidelity of a stochastically and deterministically simulated molecular RS latch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While biological systems have often been compared with digital systems, they differ by the strong effect of crosstalk between signals due to diffusivity in the medium, reaction kinetics and geometry. Memory elements have allowed the creation of autonomous digital systems and although biological systems have similar properties of autonomy, equivalent memory mechanisms remain elusive. Any such equivalent memory system, however, must silence the effect of crosstalk to maintain memory fidelity.</p> <p>Results</p> <p>Here, we present a system of enzymatic reactions that behaves like an RS latch (a simple memory element in digital systems). Using both a stochastic molecular simulator and ordinary differential equation simulator, we showed that crosstalk between two latches operating in the same spatial localization disrupts the memory fidelity of both latches. Crosstalk was reduced or silenced when simple reaction loops were replaced with multiple step or cascading reactions, showing that cascading signaling pathways are less susceptible to crosstalk.</p> <p>Conclusion</p> <p>Thus, the common biological theme of cascading signaling pathways is advantageous for maintaining the fidelity of a memory latch in the presence of crosstalk. The experimental implementation of such a latch system will lead to novel approaches to cell control using synthetic proteins and will contribute to our understanding of why cells behave differently even when given the same stimulus.</p

    ALC: automated reduction of rule-based models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity. Layer-based modeling allows for the modeling of systems not accessible previously.</p> <p>Results</p> <p>ALC (Automated Layer Construction) is a computer program that highly simplifies the building of reduced modular models, according to the layer-based approach. The model is defined using a simple but powerful rule-based syntax that supports the concepts of modularity and macrostates. ALC performs consistency checks on the model definition and provides the model output in different formats (C MEX, MATLAB, <it>Mathematica </it>and SBML) as ready-to-run simulation files. ALC also provides additional documentation files that simplify the publication or presentation of the models. The tool can be used offline or via a form on the ALC website.</p> <p>Conclusion</p> <p>ALC allows for a simple rule-based generation of layer-based reduced models. The model files are given in different formats as ready-to-run simulation files.</p

    Snazer: the simulations and networks analyzer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Networks are widely recognized as key determinants of structure and function in systems that span the biological, physical, and social sciences. They are static pictures of the interactions among the components of complex systems. Often, much effort is required to identify networks as part of particular patterns as well as to visualize and interpret them.</p> <p>From a pure dynamical perspective, simulation represents a relevant <it>way</it>-<it>out</it>. Many simulator tools capitalized on the "noisy" behavior of some systems and used formal models to represent cellular activities as temporal trajectories. Statistical methods have been applied to a fairly large number of replicated trajectories in order to infer knowledge.</p> <p>A tool which both graphically manipulates reactive models and deals with sets of simulation time-course data by aggregation, interpretation and statistical analysis is missing and could add value to simulators.</p> <p>Results</p> <p>We designed and implemented <it>Snazer</it>, the simulations and networks analyzer. Its goal is to aid the processes of visualizing and manipulating reactive models, as well as to share and interpret time-course data produced by stochastic simulators or by any other means.</p> <p>Conclusions</p> <p><it>Snazer </it>is a solid prototype that integrates biological network and simulation time-course data analysis techniques.</p

    Combining game theory and graph theory to model interactions between cells in the tumor microenvironment

    No full text
    Mathematical concepts of graph theory and game theory both influence models of biological systems. We combine these two approaches to understand how game-like interactions influence the cellular topology of a planar tissue. We review the literature on the role of cell to cell interactions in tumourigenesis and survey the mathematical approaches that have been used to simulate such cell-cell interactions. We present how this game-graph approach can be used to simulate epithelial tissue growth and how it can foster our understanding of the role of cell-cell communication in the early stages of cancer development. We present computational models that we use to test how cooperating and non-cooperating cells build planar tissues and compare the simulated tissue topologies with literature data. We further discuss how such system could be used to model microenviromental communications between cancer cells and the surrounding tissue

    Behavioural templates improve robot motion planning with social force model in human environments

    Get PDF
    An accurate model of human behaviour is crucial when planning robot motion in human environments. The Social Force Model (SFM) is such a model, having parameters that control both deterministic and stochastic elements. We have constructed an efficient motion planning algorithm by embedding the SFM in a control loop that determines higher level objectives and reacts to environmental changes. Low level predictive modelling is provided by the SFM fed by sensors; high level logic is provided by statistical model checking. To parametrise and improve our motion planning algorithm, we have conducted experiments to consider typical human interactions in crowded environments. We have identified a number of behavioural patterns which may be explicitly incorporated in the SFM to enhance its predictive power. In this paper we describe the results of these experiments and how we parametrise the SFM

    Cellular interaction network dynamics during homeostasis and cancer formation

    No full text
    The construction of a network of cell-to-cell contacts networks makes it possible to objectively characterize the patterns and the spatial organisation of tissues. Such networks are highly dynamic depending on the changes of the tissue architecture caused by cell division, death and migration. Local competitive and cooperative cell to cell interactions influence the choice cells make. We present a dynamical network model that can be used to explore the dynamics of a two dimensional tissue architecture in presence of cell to cell interactions. Various forms of experimentally observed types of interactions can be abstracted using game theory. We discuss a model of cooperative and non-cooperative cell-cell communication that can capture the interplay between cellular competition and tissue dynamics. We conclude with an outlook on the possible uses of this approach in modelling tumorigenesis and tissue homeostasi

    Cooperation and competition in the dynamics of tissue architecture during homeostasis and tumorigenesis

    No full text
    The construction of a network of cell-to-cell contacts makes it possible to characterize the patterns and spatial organization of tissues. Such networks are highly dynamic, depending on the changes of the tissue architecture caused by cell division, death and migration. Local competitive and cooperative cell-to-cell interactions influence the choices cells make. We review the literature on quantitative data of epithelial tissue topology and present a dynamical network model that can be used to explore the evolutionary dynamics of a two dimensional tissue architecture with arbitrary cell-to-cell interactions. In particular, we show that various forms of experimentally observed types of interactions can be modelled using game theory. We discuss a model of cooperative and non-cooperative cell-to-cell communication that can capture the interplay between cellular competition and tissue dynamics. We conclude with an outlook on the possible uses of this approach in modelling tumorigenesis and tissue homeostasis. © 2013 Elsevier Ltd
    corecore